
International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 888
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Defect Prediction in Software Projects-Using
Genetic Algorithm based Fuzzy C-Means
Clustering and Random Forest Classifier

Pushpavathi T.P, Suma V, Ramaswamy V

Abstract— Software project success is based on prediction of defects at early stages of software development. Aaccurate prediction of
defect prone modules in software development process enables effective discovery and identification of the defects. Such prediction
approaches are valuable for the large scale systems, where verification experts need to focus their attention and resources to problem
areas in the system under development. Identifying and locating defects in software projects to measure the project success is a difficult
task. Especially, when project size grows, this task becomes expensive with sophisticated testing and evaluation mechanisms. Context:
Software project failures are often caused by mistake made during the project, and such failures make a strong economic impact. It
analysed software engineering projects such as product development project of a company, different software engineering projects and the
projects were planned to be delivered to customers.Objective: This study reports an analysis for predicting defect prone modules using
integrated approach of genetic algorithm based fuzzy c-means clustering with random forest algorithm.Method: This method was
developed using Genetic Algorithm based Fuzzy C-means clustering with Random Forest classification applied on empirical data set and
analysis was performed. Finally it is validated with five NASA public domain defect data sets. These data sets vary in size, but all typically
contain a small number of defect samples in the learning set. For instance, in project PC1, only around 7% of the instances are
defects.Results: The overall accuracy maximization is the goal, then learning from such data usually results in a biased classifier, i.e. the
majority of samples would be classified into non-defect class.Conclusion: In order to achieve project success, it is better to understanding
of the defects. It is reasonable to suggest that a notable portion of project defects are due to mistakes made during the project
development in the case of accuracy based software engineering projects.

Index Terms— Data Classification, Defect Prediction, Fuzzy clustering, Genetic algorithm, Software Project Success, Soft Computing,
Random forest.

—————————— ——————————

1 INTRODUCTION
ARLY detection of defect-prone software components
enables verification experts to concentrate their time and
resources on the problem areas of the software system

under development. The ability of software quality models to
accurately identify critical components allows for the applica-
tion to focused on verification activities ranging from manual
inspection to automated formal analysis methods. Software
quality models, hence, help to ensure the reliability of the de-
livered products. It has become an imperative to develop and
apply good software quality models early in the software de-
velopment life cycle, especially for large-scale development of
projects [1].

High assurance and complex mission-critical software systems
are heavily dependent on reliability of their underlying soft-
ware applications. A software defect prediction is a proven

technique in achieving high software reliability. Prediction of
defect-prone modules provides one way to support software

quality engineering through improved scheduling and project
control.A fault is a defect, an error in source code that causes
failures when executed. A defect prone software module is the
one containing more number of expected defects. Accurate
prediction of defect prone modules enables the verification
and validation activities focused on the critical software com-
ponents. Clustering is defined as the classification of data or
object into different groups. It can also be referred to as parti-
tioning of a data set into different subsets.

Software reliability engineering is one of the most important
aspects of software quality [1]. Software metrics represent
quantitative description of program attributes and the critical
role they play in predicting the quality of the software has
been emphasized by Perlis et al [3]. That is, there is a direct
relationship between several complexity metrics and the
number of changes attributed to defects later found in test and
validation [4]. Many researchers have sought to develop a
predictive relationship between complexity metrics and de-
fects. Crawford et al [5] suggest that multiple variable models
are necessary to find metrics that are important in addition to
program size.
Quality of software is increasingly important and testing relat-
ed issues are becoming crucial for software. Although there is
diversity in the definition of software quality, it is widely ac-
cepted that a project with many defects lacks quality. Method-
ologies and techniques for predicting the testing effort, moni-

E

————————————————
• Pushpavathi T.P, JAIN University, Bangalore, India.

E-mail: acepushpa@yahoo.co.in
• Suma V, Dayanandsagar College of Engineering, Bangalore, India.

E-mail: sumavdsce@gmail.com
• Ramaswamy V, SASTRA University, Srinivasa Ramanujan Cen-

tre,Kumbakonam,Tamilnadu,India,
E-mail: researchwork04@gmail.com

IJSER

http://www.ijser.org/
mailto:sumavdsce@gmail.com
mailto:researchwork04@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 889
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

toring process costs and measuring the results can help in in-
creasing efficiency of software testing. Being able to measure
the defect-proneness of software can be a key step towards
steering the software testing and improving the effectiveness
of the whole process [10].

2 RELATED REVIEW
Mining software engineering data has emerged as one of the
successful research directions since few decades. Software
repositories contain a wealth of valuable information about
software projects. Using the information stored in these repos-
itories which act as predictive pattern for estimating, planning
and controlling the future project, the software developing
team can now depend less on their intuition and operate more
with realistic data. Data mining has emerged as one of the as-
suring techniques through which valuable information can be
mined from the population of empirical projects.
Significant work has been done in the field of defect detection.
The complete survey of defect prediction studies till 2011 is
provided by C. Catal in [17]. Highlights of selected papers
have been discussed in this section, including papers pub-
lished post 2008. There are various categories of methods to
predict defect classes such as machine learning methods, sta-
tistical methods, etc. It has been observed that much of the
previous work used traditional statistical methods ([18], [20],
[21], [16]) to bring out the results but very few studies have
used machine learning methods.

Recently, the trend is shifting from traditional statisti-
cal methods to modern machine learning methods. The most
common statistical methods used are univariate and multivar-
iate logistic regression. A few key points of the papers using
statistical methods are discussed by N. Ohlsson et al, in [18]
has worked on improving the techniques used by Khosgoftaar
[19] (i.e., Principal Component Analysis and Discriminant
Analysis). Authors in [18] has discussed problems that were
faced while using these methods and thus suggested the rem-
edies to those problems. Another approach to identify defect
classes early in the development cycle is to construct predic-
tion models. Authors in [20] have constructed a model to pre-
dict defect classes using the metrics that can be collected dur-
ing the design stage. This model has used only object oriented
design metrics.
 Tang et al. [21] conducted an empirical study on three
industrial real time systems and validated the CK object ori-
ented metric suite [5]. They found that only WMC and RFC
are strong predictors of defect classes. They have also pro-
posed a new set of metrics, which are useful indicators of ob-
ject oriented defect prone classes. It has been seen that most of
the empirical studies have ignored the confounding effect of
class size while validating the metrics size [16]. El. Emam et al
showed a strong size confounding effect in [16] and [23]. Thus
they concluded the metrics that were strongly associated with
defect proneness were not associated with the size of defect
proneness.

Another empirical investigation by M.Cartwright et
al. [11] conducted on a real time C++ system discussed the use
of object oriented constructs such as inheritance and polymor-
phism. M. Cartwright et al. [11] have found high defect densi-

ties in classes that participated in inheritance as compared to
classes. Briand et al. [1] have empirically investigated 49 met-
rics (28 coupling measures, 10 cohesion measures, and 11 in-
heritance measures) for predicting defect classes. There were 8
systems being studied (consisting of 180 classes in all), each of
which was a medium sized management information system.
They used univariate and multivariate analysis to find the
individual and the combined effect of object oriented metrics
and defect proneness. They did not examine the LCOM metric
and found that all the other metrics are strong predictors of
defect proneness except for NOC.

Briand et al. [24] has also validated the same 49 met-
rics. The system used for this study was the multi-agent de-
velopment system, which consists of three classes. They found
NOC metric to be insignificant, while DIT was found to be
significant in an inverse manner. WMC, RFC, and CBO were
found to be strongly significant. Yu et al. [25] empirically test-
ed 8 metrics in a case study in which the client side of a large
network service management system was studied. The system
is written in Java and consists of 123 classes. The validation
was carried out using regression analysis and discriminate
analysis. They found that all the metrics were significant pre-
dictors of defect proneness except DIT, which was found to be
insignificant.

Recently, researchers have also started using various
machine learning techniques to predict the model. Gyimothy
et al. [12] calculated CK [5] metrics from an open source web
and email suite called Mozilla. To validate the metrics, regres-
sion and machine learning methods (decision tree and artifi-
cial neural networks) were used. The results concluded NOC
to be insignificant, whereas all the other metrics were found to
be strongly significant. Zhou et al. [26] have used logistic re-
gression and machine learning methods to show how object
oriented metrics and defect proneness are related when defect
severity is taken into account. The results were calculated us-
ing the CK metrics suite and were based on the public domain
NASA dataset. WMC, CBO, and SLOC were found to be
strong predictors across all severity levels. Prior to this study,
no previous work had assessed severity of defects. The paper
by S. Kanmani et al. [13] has introduced two neural network
based prediction models. The results were compared with two
statistical methods and it was concluded that neural networks
performed better as compared to statistical methods.

Fenton et al. [27] introduced the use of Bayesian belief
networks (BBN) for the prediction of defect classes. G.J. Pai et
al. [2] also built a Bayesian belief network (BN) and showed
that the results gave comparable performance with the exist-
ing techniques. I. Gondra [14] has performed a comparison
between the artificial neural network (ANN) and the support
vector machine (SVM) by applying them to the problem of
classifying classes as defect or non-defect. Another goal of this
paper was to use the sensitivity analysis to select the metrics
that are more likely to indicate the errors. After the work of
Zhou et al. [26], the severity of defects was taken into account
by Shatnawi et al. [28] and Singh et al. [4].
Shatnawi et al. used the subset of CK metrics in [5] and Lorenz
& Kidd metrics in [9] to validate the results. The data was col-
lected from three releases of the Eclipse project. They conclud-
ed that the accuracy of prediction decreases from releases and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 890
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

alternative methods are needed to get more accurate predic-
tion. The metrics, which were found to be very good predic-
tors across all versions and across all severity levels, were
WMC, RFC, and CBO. Singh et al. [4] used the public domain
NASA dataset to determine the effect of metrics on defect
proneness at different severity levels of defects.
 Machine learning methods (decision tree and artificial
neural network networks) and statistical method (logistic re-
gression) were used. The predicted model showed lower accu-
racy at a higher severity level as compared to medium and
low severities. It was also observed that performance of ma-
chine learning methods was better than statistical methods.
Amongst all the CK metrics used CBO, WMC, RFC, and SLOC
showed the best results across all the severity levels of defects.
Malhotra et al. [29] have used LR and 7 machine learning
techniques (i.e., artificial neural networks, random forest, bag-
ging, boosting techniques [AB, LB], naive bayes, and K-star) to
validate the metrics. The predicted model using LB technique
showed the best result and the model predicted using LR
showed low accuracy. From the review we have made follow-
ing observations.
Observations:

• The CK metric suite is most widely used even though
number of metrics available in literature. It has been
seen that most of the studies have also defined their
own metric suite and they have used them for carry-
ing out the analysis [5][15][17].

• Diverse categories of methods available to predict the
most accurate model such as machine learning meth-
ods, statistical methods etc., the trend is shifting from
the traditional statistical methods to the machine
learning methods[14][25][29].

• It has been observed that machine learning is widely
used in new bodies of research to predict defect prone
classes. Results of various studies also prove that bet-
ter results are obtained with machine learning as
compared to statistical methods [17][18][25].

• Many researchers have used different types of da-
tasets, which are mostly public datasets, commercial
datasets, open source or students/university datasets
from the PROMISE and NASA repositories. We have
observed that the empirical datasets, which have been
rarely used in the studies
[2][3][4][11][12][15][21][22][26].

3 PROPOSED CLASSIFICATION PROCEDURE
The methodology consists of the following steps
3.1 Find the structural code and requirement code

attributes
The first step is to find the structural code and requirement
code attributes of software systems i.e. software metrics. The
real time defect data sets are taken from the NASA’s MDP
(Metric Data Program) data repository, [online Available:
http://mdp.ivv.nasa.gov.in] named as PC1 dataset which is
collected from a flight software from an earth orbiting satellite
coded in C programming language, containing 1107 modules
and only 109 have their requirements specified. PC1 has 320
requirements available and all of them are associated with

program modules. All these data sets varied in the percentage
of defect modules, with the PC1 dataset containing the least
number of defect modules.
The software metric data gives us the values for specific at-
tributes to measure a specific module/function or the whole
software. When combined with the weighted error/defect
data, this data set becomes the input for a machine learning
system. A learning system is defined as a system that is said to
learn from experience with respect to some class of tasks and
performance measure, such that its performance at these tasks
improves with experience. To design a learning system, the
data set in this work is divided into two parts: the training
data set and the testing data set. Some predictor functions are
defined and trained with respect to Multi-Layer Preceptor and
Decision Tree algorithms and the results are evaluated with
the testing data set.
3.2 Select the suitable metric values as representation
The modelling techniques applied to cover the main classifica-
tion paradigms, including principal component analysis, dis-
criminate analysis, logistic regression and logical quality will
be improved as more defects will be detected. Predicting de-
fects early in the software life cycle can be used to improve
software process control and achieve high software reliability.
Apt predictions of defects in software modules can be used to
direct cost-effective quality enhancement effort modules that
are likely to have a high number of defects. Prediction models
based on software metrics, can estimate number of defects in
software modules. Software metrics are attributes of the soft-
ware system and may include process, product and execution
metrics. Various attributes, which determine the quality of the
software, include maintainability, defect density, defect
proneness, normalized rework and reusability etc.
The Suitable metric values used are defect and without defect
attributes, we set these values in database create in MATLAB
R2010 A as 0 and 1.That 0 means data with defect and 1 for
data without defect. The metrics in these datasets (NASA
MDP dataset) describe projects which vary in size and com-
plexity, programming languages, development processes, etc.
When reporting a defect prediction modelling experiment, it is
important to describe the characteristics of the datasets. Each
data set contains twenty-one software metrics, which describe
product’s size, complexity and some structural properties. We
use only defect and defect free attributes to classify the select-
ed NASA MDP PC1 dataset. Also the product metrics and
product module metrics available in dataset which can also be
used are,
The product requirement metrics are as follows:

• Module
• Action
• Conditional
• Continuance
• Imperative
• Option
• Risk_Level
• Source
• Weak_Phrase

The product module metrics are as follows:
• Module
• Loc_Blank

IJSER

http://www.ijser.org/
http://mdp.ivv.nasa.gov.in/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 891
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

• Branch_Count
• Call_Pairs
• LOC_Code_and_Comment
• LOC_Comments
• Condition_Count
• Cyclomatic_complexity
• Cyclomatic_Density
• Decision_Count
• Edge_Count
• Essential_Complexity
• Essential_Density
• LOC_Executable
• Parameter_Count
• Global_Data_Complexity
• Global_Data_Density
• Halstead_Content
• Halstead_Difficulty
• Halstead_Effort
• Halstead_Error_EST
• Halstead_Length
• Halstead_Prog_Time
• Halstead_Volume
• Normalized_Cyclomatic_Complexity
• Num_Operands
• Num_Operators
• Num_Unique_Operands
• Num_Unique_Operators
• Number_Of_Lines
• Pathological_Complexity
• LOC_Total

3.3 Empirical data set attributes
With real-time systems defect prediction becoming more
complex and unpredictable, partly due to increasingly sophis-
ticated requirements, traditional software development tech-
niques might face difficulties in satisfying these requirements.
Future real-time software systems may need to dynamically
adapt themselves based on the run-time mission-specific re-
quirements and operating conditions. This involves dynamic
code synthesis that generates modules to provide the func-
tionality required to perform the desired operations in real-
time. However, this necessitates the need to develop a real-
time assessment technique that classifies these dynamically
generated systems as being defect/defect-free. A variety of
software defect predictions techniques have been proposed,
but none has proven to be consistently accurate. These tech-
niques include statistical method, machine learning methods,
parametric models and mixed algorithms [12]

An empirical investigation related to this research is car-
ried on several product based software industries of varying
production capabilities. In order to overcome the complexities
involved in universe of projects developed in those industries,
this research aims to establish hypothesis for the purpose of
sources of data collection.The basic hypothesis of software
quality prediction is that a module currently under develop-
ment is defect prone if a module with the similar product or
process metrics in an earlier project (or release) developed in
the same environment was defect prone. Therefore, the infor-
mation available early within the current project or from the
previous project can be used in making predictions. This

methodology is very useful for the large-scale projects or pro-
jects with multiple releases [15][21].The following data set at-
tributes are identified from our previous work[30].

• Total project time in hours,
• Inspection time scheduled,
• Number of inspectors involved
• Experience level of inspectors (years),
• Defect count estimation,
• Number of defects detected,
• Defects actually captured,
• Number of defects not captured,
• Defects due to bad fixes,
• Testing time scheduled.
• Testing time scheduled
• Number of testers
• Experience level of testers (years)
• Defect count estimation
• Number of defects detected

3.4 Objective Function Based Fuzzy Clustering
Objective function based fuzzy clustering algorithms such

as the fuzzy c-means (FCM) algorithm have been used exten-
sively for different tasks such as pattern recognition, data min-
ing, image processing and fuzzy modelling. Applications have
been reported from different fields such as financial engineer-
ing, direct marketing and systems modelling. Fuzzy clustering
algorithms partition the data set into overlapping groups such
that the clusters describe an underlying structure within the
data. In order to obtain a good performance from a fuzzy clus-
tering algorithm, a number of issues must be considered.
These concern the shape and the volume of the clusters, the
initialization of the clustering algorithm, the distribution of the
data patterns and the number of clusters in the data.

In general, cluster analysis refers to a broad spectrum of
methods which try to subdivide a data set X into c subsets
(clusters) which are pairwise disjoint, all nonempty, and re-
produce X. via union. The clusters then are termed a hard (i.e.,
non-fuzzy) c-partition of X. Let be a sample
of N observations in (n-dimensional Euclidean space);
is the k-th feature vector; the j-th feature of . If is an
integer, , a conventional (or "hard") c-partition of
is a c-tuple of subsets of that satisfies three
conditions:

 (1)
 (2)

 (3)
In these equations, stands for the empty set, and

are respectively, intersection, and union. In the context dis-
cussed later, the sets are termed "clusters in . Clusters
analysis (or simply clustering) in Y refers to the identification
of a distinguished c-partition of whose subsets contain
points which have high intracluster resemblance; and, simul-
taneously, low intercluster similarity. The mathematical crite-
rion of resemblance used to define an "optimal" c-partion is
termed a cluster criterion. One hopes that the substructure of

 represented by suggests a useful division or relation-
ship between the population variables of the real physical pro-
cess from whence Y was drawn. One of the first questions one
might ask is whether Y was drawn. One of the first questions
one might ask is whether Y contains any clusters at all. In

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 892
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

many geological analyses, a value for c is known a priori on
physical grounds. If c is unknown, then determination of an
optimal c becomes an important issue. This question is some-
times termed the "cluster validity" problem.
3.5 Classification of the software components into

defect/defect free
The Flow for the classification approach is shown in figure
1 below.

Fig 1. Block diagram for the proposed classification process system.

3.6 Genetic Algorithm Optimization of Fuzzy C-means

Clustering
Genetic Algorithm (GA) is a part of soft computing para-

digm known as evolutionary computation. They attempt to
arrive at optimal solutions through a process similar to biolog-
ical evolution. This involves following the principles of sur-
vival of the fittest, and crossbreeding and mutation to generate
better solutions from a pool of existing solutions.

Genetic algorithms have been found to be capable of find-
ing solutions for a wide variety of problems for which no ac-
ceptable algorithmic solutions exist. The GA methodology is
particularly suited for optimization, a problem solving tech-
nique in which one or more good solutions are searched for in
a solution space consisting of a large number of possible solu-
tions. GA reduce the search space by continually evaluating
the current generation of candidate solutions, discarding the
ones ranked as poor, and producing a new generation through
crossbreeding and mutating those ranked as good. The rank-
ing of candidate solutions is done using some pre-determined
measure of goodness or fitness.

A genetic algorithm is a probabilistic search technique
that computationally simulates the process of biological evolu-
tion. It mimics evolution in nature by repeatedly altering a
population of candidate solutions until an optimal solution is
found.

The GA evolutionary cycle starts with a randomly select-
ed initial population. The changes to the population occur
through the processes of selection based on fitness, and altera-

tion using crossover and mutation. The application of selec-
tion and alteration leads to a population with a higher propor-
tion of better solutions. The evolutionary cycle continues until
an acceptable solution is found in the current generation of
population, or control parameter such as the number of gener-
ations is exceeded.

Figure 2. Block Diagram for the optimization process used in fuzzy c-
means clustering.

The steps in the typical genetic algorithm for finding a solu-
tion to a problem are listed below:

1. Create an initial solution population of a certain
size randomly

2. Evaluate each solution in the current generation
and assign it a fitness value.

3. Select “good” solutions based on fitness value
and discard the rest.

4. If acceptable solution(s) found in the current gen-
eration or maximum number of generations is ex-
ceeded then stops.

5. Alter the solution population using crossover and
mutation to create a new generation of solutions.

6. Go to step 2.
3.7 Random Forest Classifier

A classification tree is a top-down tree-structured classifi-
er. It is built through a process known as recursive partition-
ing whereby the measurement space is successively split into
subsets, each of which is equivalent to a terminal node in the
tree. Starting from the root node (i.e., the top node of the tree)
which contains the entire sample, all the candidate splits are
evaluated independently, the most appropriate one is selected.
The “appropriateness” of a split can be evaluated by different
measures. The most popular one is based on impurity func-
tions. Impurity measures are the quantification of how well
the classes are being separated.

In general, the value of an impurity measure is the largest
when data are split evenly for attribute values and zero when
all the data points belonging to a single class. There are vari-
ous impurity measures used in the literature. The most com-
monly used are: Entropy-based measure. Purity (or homoge-
neity) of class labels is measured before and after the split. The
split which produces the most discrimination between classes
is the most appropriate one. The classification tree is grown to

Fitness Function
(Fuzzy C-means Clustering)

Genetic Algorithm Toolbox

Optimization of Number of clusters in
Fuzzy clustering using GA for a value

of upper bound and lower bound

Input Dataset
(NASA pc1 dataset)

Data Classification using Pro-
posed Fuzzy C-means Cluster-

ing Algorithm

Load Test Data

Classification results
 IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 893
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

a point where the number of instances in the terminal node is
small or the class membership of instances in the node is pure
enough. The label of the class which dominates the instances
in the terminal node is assigned to this node. The fully grown
tree may overfits the training data and may need to be cut
back by using criteria which balance the classification perfor-
mance of the tree and the tree’s complexity.

In a tree model, an edge from a parent node to one of its
children nodes indicates a rule. This child node is reachable
only when the rule is satisfied. A path from the root node to a
terminal node of the tree, which consists of at least one edge,
specifies a classification rule. Such classification rule is the
combination of the functions associated with all of the edges
on the path. The decision associated with each classification
rule is stated by the label attached to the terminal node. For a
new data instance characterized by the input vector x, we
would expose it to the root node of the tree and then follow
along the path in which x satisfies all the rules. Obtained class
label at the terminal node represents the classification deci-
sion.

Trees represent an efficient paradigm in generating un-
derstandable knowledge structures. But, experience shows
that the lack of accuracy is the reason that prevents classifica-
tion trees from being the ideal tool for predictive learning. One
way to improve accuracy of classification trees is to utilize
ensemble learning. Ensemble methods learn a large number of
models instead of a single model and combine the predictions
of all the models with a learning algorithm.

Bagging and random forests are ensemble methods. They
construct a collection of base models and simply average their
predictions. Bagging generally works for different classifiers,
including trees or neural networks, while random forests use
only trees as base models. Random forests algorithm stems
from bagging and can be considered as a special case of bag-
ging.

The idea behind bagging is to take a bootstrap replicate (a
sample collected with replacement) from the original training
set and obtain a model f(x). By bootstrapping, K different ver-
sions of the learning set can be generated and K models f1 ,...,
fk are obtained. Each tree predicts class membership of any
test case. For overall classification, the predicated class is de-
termined by plurality voting among the classes C, i.e., the class
label most frequently predicted by the K models is selected.

Like bagging, a random forest consists of a collection of K
tree classifiers h1(x), h2(x),..., hk(x). Each classifier is built up-
on a bootstrap replica of the training set and votes for one of
the classes in C. A test instance is classified by the label of the
wining class. With bootstrap sampling, approximately 36.8%
of the training instances are not used in growing each tree
(due to sampling with replacement). These data instances are
called out-of-bag (OOB) cases. Random forest algorithm uses
OOB cases to estimate the classification error and evaluate the
performance of the forest.

In many applications including the prediction of defect
prone modules in software engineering, the prediction models
are faced with class imbalance problem. It occurs when the
classes in C have a dramatically different numbers of repre-
sentatives in the training dataset and/or very different statisti-
cal distributions. Learning from imbalanced data can cause the

classifier to be biased. Such bias is the result of one class being
heavily over-represented in the training data compared to the
other classes. Classes containing relatively few cases can be
largely ignored by the learning algorithms because the cost of
performing well on the large class outweighs the cost of doing
poorly on the much smaller classes, provided that the algo-
rithm aims at maximizing overall accuracy.

Fig. 3.
Con-
struc-
tion of

a
Ran-
dom
For-
est

F
or

instance, a binary classification problem such as the identifica-
tion of defect prone modules may be represented by 1,000 cas-
es, 950 of which are negative cases (majority class, not defect
prone modules) and 50 are positive cases (minority class, de-
fect prone modules). Even if the model classified all the cases
as negative and misclassified all the positive cases, the overall
accuracy could reach 95%, a great result for any machine
learning classification algorithm. In many situations, the mi-
nority class is the subject of our major interest. In practice, we
want to achieve a lower minority classification error even at
the cost of a higher majority class error rate. For example, if
the goal of identifying defect prone modules early in software
development is exposing them to a more rigorous set of verifi-
cation and validation activities, the imperative is to identify as
many potentially defect modules as possible. If we happen to
misclassify non-defect modules as defect, the verification pro-
cess will increase its cost as some modules are unnecessarily
analysed. But, the consequence of misclassifying defect soft-
ware as non-defect may be a system failure, a highly undesir-
able outcome.

4 IMPLEMENTING THE MODEL
The proposed methodology is implemented in the

MATLAB 7.4.Evaluate both the approaches for the modelling
of the reusability data. Implement the model and test the per-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 894
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

6 Data Input (PC1 database with attributes)

formance of the model using following criteria:
a. Perform the training of the dataset.
b. After training, test it on the basis of error values

MAE and RMSE, and efficiency parameters like
accuracy and net reliability in percentage.

• Mean Absolute Error
Mean absolute error, MAE is the average of the difference be-
tween predicted and actual value in all test cases; it is the av-
erage prediction error. The formula for calculating MAE is
given in equation shown below:

• Root Mean Squared Error:

RMSE is frequently used measure of differences between val-
ues predicted by a model or estimator and the values actually
observed from the thing being modelled or estimated. It is just
the square root of the mean square error as shown in equation
given below:

After calculating MAE and RMSE values for each and every
algorithm, the comparisons are made on the basis of the least
value of MAE and RMSE error values. The mean absolute er-
ror is chosen as the standard error. The technique having low-
er value of mean absolute error is chosen as the best defect
prediction technique.
In general, reliability is the ability of a person or system to
perform and maintain its functions in routine circumstances,
as well as hostile or unexpected circumstances. In the fields of
science, engineering, industry, and statistics, the accuracy of a
measurement system is the degree of closeness of measure-
ments of a quantity to that quantity's actual (true) value. The
precision of a measurement system, also called reproducibility
or repeatability, is the degree to which repeated measure-
ments under unchanged conditions show the same results.

5 RESULTS AND DICUSSION
In this study, training and testing methodology is being used,
wherein a project is chosen for training the system. The NASA
MDP dataset named PC1 is used in this.Then the Fuzzy C-
means clustering based classification approach is applied on
the same project and the finally calculated values are then
used to classify the modules of project as defect prone or de-
fect free. The classification is based on values of accuracy,
MAE and RMSE.Genetic algorithm consider fuzzy c-means
clustering as a fitness function which need to minimize, and
give a range (upper bound and lower bound) to genetic algo-
rithm to select a number of clusters for the problem value. In
order to get optimum classification (Upper bound is consid-
ered to be 8 and lower bound is 2 in this case)

The input data having 1107 modules as we discussed
earlier in third section, but in order to reduce complexity in
calculations, here it uses only 100 modules for training pur-
pose. The original dataset contains 22 columns, column 1 to 21
shows the data entry values and the last column show the at-
tribute value of dataset, i.e., the data is with defect or without

defect. If it plot the data set with 100 modules and all consid-
ered columns (22 columns), the figure will look as shown in
figure 4.

Fig 4. Input NASA pc1 dataset with attributes
(defect and without defect)

In original dataset Class Distribution: the class value (defects)
is discrete
% false: 77 = 6.94%
% true: 1032 = 93.05%
In training dataset we taken, Class Distribution: the class value
(defects) is discrete
% data with positive attribute: 23 = 23%
% data with negative attribute: 77 = 77%
This is a PROMISE Software Engineering Repository data set
made publicly available in order to encourage repeatable, veri-
fiable, refutable, and/or improvable predictive models of
software engineering. In training dataset input, 77 modules
have data with negative attributes, if we plot certain defect
data, it as shown in figure 5. The X axis shows the data mod-
ules with defect, and Y axis shows data value stores in 21 col-
umns of input dataset.

Fig 5. Input
NASA pc1 dataset without defect attributes when separating defect attrib-

utes from input data
In training dataset input, 77 modules have data with negative
attributes, if we plot certain defect data, it as shown in figure
5. The X axis shows the data modules with defect, and Y axis
shows data value stores in 21 columns of input dataset.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

4 Data without defects

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 895
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 6. Input NASA pc1 dataset with defect attributes when separating
without defect attributes from input data

In training dataset input, 23 modules has data with positive
attributes after the 77 rows of data with negative attributes, if
we plot certain defect data, it look like as shown in figure 6.
The X axis shows the data modules without defect, and Y axis
shows data value stores in 21 columns of input dataset.

Fig. 7. Cluster separation in silhouette plot for our clustering approach

To get an idea of how well-separated the resulting clusters are,
figure 7 infers a silhouette plot using the cluster indices output
from fuzzy c-means clustering. The silhouette plot displays a
measure of how close each point in one cluster is to points in
the neighbouring clusters. This measure ranges from +1, indi-
cating points that are very distant from neighbouring clusters,
through 0, indicating points that are not distinctly in one clus-
ter or another, to -1, indicating points that are probably as-
signed to the wrong cluster.From the silhouette plot, it shows
that most points in the third cluster have a large silhouette
value, greater than 0.6, indicating that the cluster is somewhat
separated from neighbouring clusters. However, the first clus-
ter contains many points with low silhouette values, and the
second contains a few points with negative values, indicating
that those two clusters are not well separated.Figure 8 shows it
can increase the number of clusters to see if this classification
can find further grouping structure in the data. Now the op-
tional 'display' parameter to print out information about each
iteration in the clustering algorithm.The normal cluster plot
does not include the cluster centroids, because a centroid with
respect to the cosine distance corresponds to a half-line from
the origin in the space of the raw data. However, it can make a
parallel coordinate plot of the normalized data points to visu-
alize the differences between cluster centroids as shown in
figure 8.

Fig.8. Grouping of different data values in clusters

 (3 clusters are considered in this approach)
It's clear from this plot that projects from each of the three
clusters have distinctly different relative parameters. The first
cluster has parameter that are strictly smaller than the other.
The second two clusters' parameters overlap in size, however,
those from the third cluster overlap more than the second. it
can also observe that the second and third clusters include few
projects which are very similar to each other.

-0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

st
er

SL SW PL PW
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cluster 1

SL SW PL PW
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cluster 2

SL SW PL PW
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cluster 3

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3
x 10

6 Data with defects

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 896
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

0 5 10 15 20 25
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

12Variations in Objective Function with respect to Iterations count

Fig. 9. Variation in objective function with respect to iterations count for

random forest classifier

Parent is the vector of parent pointers, with 0 for a root. Post is
an optional post-order permutation on the tree nodes. If can
leave out post, tree-layout computes it. X and Y are vectors of
coordinates in the unit square at which to lay out the nodes of
the tree to make it in figure 9.

1 2
0

0.5

1

1.5

2

2.5
x 10

6 Value of Centroid for the number of Clusters

Fig.10. Value of centroid for the number of clusters in genetic algorithm

based fuzzy c-means classification

Figure 10 infers genetic algorithm based fuzzy clustering
treats observations in this data as objects having locations and
distances from each other. It partitions the objects into number
of mutually exclusive clusters, such that objects within each
cluster are as close to each other as possible, and as far from
objects in other clusters as possible. Each cluster is character-

ized by its centroid or center point. Of course, the distances
used in clustering often do not represent spatial distances.The
accuracy of a measurement system is the degree of closeness
of measurements of a actual quantity (true) value. In our ap-
proach, the achieved accuracy is approximately 91.8469 %, if
we draw a semilogy plot with this accuracy value. Semilogy
plots data with logarithmic scale for the Y-axis. Semilogy of
data creates a plot using a base 10 logarithmic scale for the Y-
axis and a linear scale for the X-axis. It plots the columns of Y
versus their index if Y contains real numbers. “Semilogy (da-
ta)” is equivalent to “semilogy (real (data), imag (data))” if Y
contains complex numbers. Semilogy ignores the imaginary
component in all other uses of this function.

TABLE 1: DEFECT PREDICTION ACCURACY FOR EMPIRICAL DATA SET
WITH HYBRID METHODS (WITHOUT GA_FCM_MODIFIED RF)

Fig.11. Accuracy and reliability of Hybrid models

TABLE 2: DEFECT PREDICTION ACCURACY FOR EMPIRICAL DATA SET
WITH GA_FCM_MODIFIED RF

Method Accuracy
%

MAE RMSE Reliability
%

K-means Clustering 64.3678 0.0800 0.0636 56.154

Adaptive Neuro
Fuzzy based classifier

81.8182 0.18181 0.2010 59.75

GA based FCM 86.6523 0.65234 0.1835 60.75

FCM based Random
forest

89.8469 0.18642 0.1815 79.852

Method Accuracy
%

MAE RMSE Reliability
%

K-means Cluster-
ing

71.6561 1.0352 0.1200 75.214

Adaptive Neuro
Fuzzy based
classifier

93.125 0.1200 0.01636 77.55

GA based FCM 90.1253 0.200 0.050 79.855

GA-FCM based
Random forest
classifier

98.237 0.0300 0.00098 92.625

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 897
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 12. Accuracy and reliability of GA_FCM_RF model

Table 1,table 2 and table 3 shows the accuracy and reliability
of hybrid models,with integrated (GA_FCM_RF)model and
validation results correspondingly.From these results it can
detect integrated methods gives the better accuracy and relia-
bility for defect predictions as compared to single and hybrid
classifier methods.

TABLE 3:

DEFECT

PREDICTION

ACCURACY VALIDATION WITH NASA PC1 DATA SET

Technique Accuracy % MAE RMSE Reliability
%

K-means Clus-
tering

76.561 0.10352 0.11200 78.354

Adaptive Neuro
Fuzzy based
classifier

98.125 0.0210 0.01563 88.751

GA based FCM 90.1253 0.0200 0.04950 76.753

GA-FCM based
Random forest
classifier

98.237 0.0300 0.00092 92.625

Fig. 13. Accuracy and reliability validation with NASA PC1 data set

6 CONCLUSION

Regarding the overall performance of random forests, two
important observations emerge from these experiments. One
is that the random forest algorithm is always one of the best
classifiers if the user-specific voting thresholds approximate
the proportion of defect-prone modules in the project’s train-
ing set. The second observation relates the classification per-
formance of two variants of the random forest algorithm. Bal-
anced random forests provide a moderate performance in-
crease over the traditional random forest algorithm. Since the
improvement is moderate, software quality engineers have to
decide whether it is worth additional effort in the design of
experiments. Unlike traditional random forests and all other
classification algorithms reported in this paper, balanced ran-
dom forests require some extra effort as their implementation
is not immediately available from off-the-shelf software tools.
However, if the software project requires that as many as pos-
sible modules to be inspected due to a dire consequence of
software failures, this extra effort may be warranted.

Prediction of defect-prone modules provides one way
to support software quality engineering through improved
scheduling and project control. So, there is a need to develop a
real-time assessment technique that classifies these dynamical-
ly generated systems as being defect/defect-free. A variety of
software defect predictions techniques have been proposed,
but none has proven to be consistently accurate
Defect prediction concerns the resource allocation problem:
Having an accurate estimate of the distribution of bugs across
components helps project managers to optimize the available
resources by focusing on the problematic system parts. Differ-
ent approaches have been proposed to predict future defects
in software systems, which vary in the data sources they use,
in the systems they were validated on, and in the evaluation
technique employed; no baseline to compare such approaches
exists.

Here it presented a defect prediction model using
fuzzy c-means clustering based approach to estimate software
reliability and software quality. In order to achieve software
quality defects must be known prior to development so that
more emphasis can be made on defect prone areas. We used
the training and testing methodology. By analyzing the results
it is clear that our fuzzy c-means clustering based approach
gives the better result with an accuracy of more than 90 %.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 9, September-2014 898
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

REFERENCES
[1] L. Briand, W. Daly and J. Wust, “Exploring the relationships between design

measures and software quality,” Journal of Systems and Software, Vol.51,
No.3, 2000, pp.245-273.

[2] G. Pai, “Empirical analysis of software defect content and defect proneness
using Bayesian methods,” IEEE Transactions on Software Eng., Vol.33, No.10,
2007, pp.675-686.

[3] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical analysis for
investigating the effect of object-oriented metrics on defect proneness: A repli-
cated case study,” Software Process: Improvement and Practice, Vol.16, No.1,
2009, pp.39-62.

[4] Y. Singh, A. Kaur, and R. Malhotra, “Empirical vlidation of object-oriented
metrics for predicting defect proneness models,” Software Quality Journal,
Vol.18, No.1, 2010, pp.3-35.

[5] S. Chidamber and C. Kemerer, “A Metrics Suite for Object-Oriented Design,”
IEEE Trans. Soft Ware Eng., Vol.20, No.6, 1994, pp.476-493.

[6] L.Briand, P. Devanbu, W. Melo, “An investigation into coupling Measures for
C++,” In Proceedings of the 19th International Conference on Software Engi-
neering.

[7] J. Bansiya and C. Davis, “A Hierarchical Model for Object-Oriented Design
Quality Assessment,” IEEE Trans. Software Eng., Vol.28, No.1, 2002, pp.4-17.

[8] F. Brito e Abreu and W. Melo, “Evaluating the Impact of Object-Oriented
Design on Software Quality,” Proceedings Third Int’l Software Metrics Sym-
posium, 1996, pp.90-99.

[9] M.Lorenz and J. Kidd, “Object-Oriented Software Metrics,” Prentice-Hall,
1994.

[10] W. Li and W. Henry, “Object-Oriented Metrics that Predict Maintainability,”
In Journal of Software and Systems, 1993, Vol.23, pp.111-122.

[11] M.Cartwright and M. Shepperd, “An empirical investigation of an object-
oriented software system," IEEE Transactions on Software Engineering,
Vol.26, No.8, 1999, pp.786-796.

[12] T.Gyimothy, R. Ferenc, and I.Siket, “Empirical validation of object-oriented
metrics on open source software for defect prediction,” IEEE Transactions on
Software Engineering, Vol.31, No.10, 2005, pp.897-910.

[13] S. Kanmani, V.R. Uthariaraj, V. Sankaranarayanan, P. Thambidurai, “Object-
oriented software prediction using neural networks,” Information and Soft-
ware Technology, Vol.49, 2007, pp.482-492.

[14] I. Gondra, “Applying machine learning to software defect-proneness predic-
tion,” The Journal of Systems and Software,” Vol.81, 2008, pp.186-195.

[15] Promise. http://promisedata.org/repository/.

[16] K. El Emam, S. Benlarbi, N. Goel, and S. Rai, “A validation of object-oriented
metrics,” NRC Technical report ERB-1063, 1999.

[17] C. Catal and B. Diri, “A systematic review of software defect prediction stud-
ies,” Expert Systems with Applications Vol.36, 2009, pp 7346-7354.

[18] N. Ohlsson, M. Zhao and M. Helander, M, “Application of multivariate anal-
ysis for software defect prediction,” Software Quality Journal, Vol.7, 1998,
pp.51-66.

[19] T.M. Khoshgoftaar, E.B. Allen, K.S. Kalaichelvan and N. Goel, “Early quality
prediction: a case study in telecommunications,” IEEE Software, Vol.13, No.1,
1996, pp.65-71.

[20] K.E. Emam and W. Melo, “The Prediction of Defect Classes Using Object-
Oriented Design Metrics,” Technical report: NRC 43609, 1999.

[21] M.H. Tang, M.H. Kao, and M.H. Chen, “An empirical study on object-
oriented metrics,” In Proceedings of Metrics, 242-249.

[22] L. Briand, J. Wuest, S. Ikonomovski, and H. Lounis, “A comprehensive Inves-
tigation of Quality Factors in Object-Oriented Designs: An Industrial Case
Study,” International Software Engineering Research Network, technical re-
port ISERN-98-29, 1998.

[23] K. El Emam, S. Benlarbi, N. Goel, and S. Rai, “The confounding effect of class
size on the validity of object oriented metrics,” IEEE Transactions on Software
Engineering, Vol.27, No.7, 2001, pp.630-650.

[24] L. Briand, J. Wu¨st, J and H. Lounis, “Replicated Case Studies for Investigating
Quality Factors in Object Oriented Designs,” Empirical Software Engineering.
International Journal (Toronto, Ont.), Vol.6, No.1, 2001, pp.11-58.

[25] P. Yu, T. Systa, and H. Muller, “Predicting defect-proneness using OO met-
rics: An industrial case study,” In Proceedings of Sixth European Conference
on Software Maintenance and Reengineering,Budapest, Hungary, 2002,
pp.99-107.

[26] Y. Zhou, and H. Leung, H, “Empirical Analysis of Object-Oriented Design
Metrics for Predicting High and Low Severity Defects,” IEEE Transactions on
Software Engineering, Vol.32, No.10, 2006, pp.771-789.

[27] N. Fenton and N. Ohlsson, “Quantitative analysis of defects and failures in a
complex software system,” IEEE Transactions on Software Engineering,
Vol.26, No.8, 2000, pp.797-814.

[28] R. Shatnawi and W. Li, “The effectiveness of software metrics in identifying
error-prone classes in post release software evolution process,” The Journal of
Systems and Software, Vol.81, 2008, pp.1868-1882.

[29] R. Malhotra and Y. Singh, “On the Applicability of Machine Learning Tech-
niques for Object Oriented Software Defect Prediction,” Software Engineer-
ing: An International Journal, Vol.1, No.1, 2011, pp.24-37.

[30] V. Ramaswamy , V. Suma , T.P. Pushphavathi, “AN APPROACH TO PRE-
DICT SOFTWARE PROJECT SUCCESS BY CASCADING CLUSTERING
AND CLASSIFICATION”, Journal of Parallel and Distributed Computing.
ISBN: 978-1-84919-736-6, 2012, Inspec.http://digital-
library.theiet.org/content/conferences/2012/004, DOI:10.1049/ic.2012.0137
,Publisher: IEEE.

 IJSER

http://www.ijser.org/
http://dx.doi.org/10.1049/ic.2012.0137

	1 Introduction
	2 Related Review
	3 Proposed classification Procedure
	3.1 Find the structural code and requirement code attributes
	3.2 Select the suitable metric values as representation
	3.3 Empirical data set attributes
	3.4 Objective Function Based Fuzzy Clustering
	3.5 Classification of the software components into defect/defect free
	3.6 Genetic Algorithm Optimization of Fuzzy C-means Clustering
	3.7 Random Forest Classifier

	4 Implementing the Model
	5 Results and Dicussion
	6 Conclusion
	References

